Dr. David Siderovski, Ph.D.

Professor of Computational Pharmacology

Research Expertise

Regulator of G protein Signaling (RGS) proteins
Pharmacology
Molecular Biology
Cellular and Molecular Neuroscience
Molecular Medicine
Cell Biology
Developmental Biology
Genetics
Drug Discovery
Applied Microbiology and Biotechnology
Developmental Biology
Ecology, Evolution, Behavior and Systematics
Structural Biology
Biochemistry
Immunology and Allergy
Immunology
Infectious Diseases
Virology
Biophysics
Psychiatry and Mental health
Microbiology
Clinical Biochemistry
Analytical Chemistry
Organic Chemistry
Computer Science Applications
Catalysis
Colloid and Surface Chemistry
Parasitology

About

Dr. David Siderovski is a renowned scientist and academic, with a career spanning over two decades. He received his Ph.D. in Medical Biophysics from the University of Toronto in 1997, where he specialized in signal transduction and cellular signaling pathways. After completing his doctorate, Dr. Siderovski held various faculty positions at prestigious universities, including the University of North Carolina at Chapel Hill, West Virginia University School of Medicine, and the University of North Texas Health Science Center. At these institutions, Dr. Siderovski has made significant contributions to the field of pharmacology through his research on G protein-coupled receptors (GPCRs) and RGS proteins, which are key regulators of GPCR cellular signaling. His work has helped to advance the understanding of RGS proteins and their roles in various diseases, including cancer, cardiovascular disorders, and neurological disorders. In addition to his research, Dr. Siderovski is also a dedicated educator and mentor. He has taught and mentored numerous undergraduate, graduate, and medical students, and has served as a mentor for postdoctoral fellows and junior faculty members. He is known for his passion and enthusiasm for science and his ability to inspire and guide the next generation of scientists. Dr. Siderovski has received numerous awards and honors for his contributions to the scientific community. He was the recipient of the Abel Award in 2004 from the American Society of Pharmacology & Experimental Therapeutics for his pioneering discoveries of the RGS proteins and the GoLoco motif. He has also served on editorial boards of several scientific journals (including a decade at *J.Biol.Chem.*) and has been a member of various scientific committees, NIH study section panels, and pharma/biotech advisory boards, including for Inspire, Wyeth, and BellBrook Labs. Overall, Dr. David Siderovski is a highly accomplished and respected scientist and educator, whose research has had a significant impact on the field of pharmacology. His dedication and passion for science continue to inspire and influence the next generation of researchers in this field.

Publications

Molecular characterization of mitochondrial apoptosis-inducing factor

Nature / Feb 01, 1999

Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., & Kroemer, G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397(6718), 441–446. https://doi.org/10.1038/17135

Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN

Cell / Oct 01, 1998

Stambolic, V., Suzuki, A., de la Pompa, J. L., Brothers, G. M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J. M., Siderovski, D. P., & Mak, T. W. (1998). Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN. Cell, 95(1), 29–39. https://doi.org/10.1016/s0092-8674(00)81780-8

G-protein signaling: back to the future

Cellular and Molecular Life Sciences / Mar 01, 2005

McCudden, C. R., Hains, M. D., Kimple, R. J., Siderovski, D. P., & Willard, F. S. (2005). G-protein signaling: back to the future. Cellular and Molecular Life Sciences, 62(5), 551–577. https://doi.org/10.1007/s00018-004-4462-3

5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II

Genes & Development / Dec 15, 1997

McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Program, A. E., Shuman, S., & Bentley, D. L. (1997). 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes & Development, 11(24), 3306–3318. https://doi.org/10.1101/gad.11.24.3306

The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits

International Journal of Biological Sciences / Jan 01, 2005

Siderovski, D. P., & Willard, F. S. (2005). The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. International Journal of Biological Sciences, 51–66. https://doi.org/10.7150/ijbs.1.51

Regulators of G-Protein signalling as new central nervous system drug targets

Nature Reviews Drug Discovery / Mar 01, 2002

Neubig, R. R., & Siderovski, D. P. (2002). Regulators of G-Protein signalling as new central nervous system drug targets. Nature Reviews Drug Discovery, 1(3), 187–197. https://doi.org/10.1038/nrd747

Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure

Nature Medicine / Nov 09, 2003

Tang, M., Wang, G., Lu, P., Karas, R. H., Aronovitz, M., Heximer, S. P., Kaltenbronn, K. M., Blumer, K. J., Siderovski, D. P., Zhu, Y., & Mendelsohn, M. E. (2003). Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nature Medicine, 9(12), 1506–1512. https://doi.org/10.1038/nm958

Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism

Nature Cell Biology / Jul 22, 2002

Lambert, J. M., Lambert, Q. T., Reuther, G. W., Malliri, A., Siderovski, D. P., Sondek, J., Collard, J. G., & Der, C. J. (2002). Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nature Cell Biology, 4(8), 621–625. https://doi.org/10.1038/ncb833

A Seven-Transmembrane RGS Protein That Modulates Plant Cell Proliferation

Science / Sep 19, 2003

Chen, J.-G., Willard, F. S., Huang, J., Liang, J., Chasse, S. A., Jones, A. M., & Siderovski, D. P. (2003). A Seven-Transmembrane RGS Protein That Modulates Plant Cell Proliferation. Science, 301(5640), 1728–1731. https://doi.org/10.1126/science.1087790

Translation of Polarity Cues into Asymmetric Spindle Positioning in Caenorhabditis elegans Embryos

Science / Jun 20, 2003

Colombo, K., Grill, S. W., Kimple, R. J., Willard, F. S., Siderovski, D. P., & Gönczy, P. (2003). Translation of Polarity Cues into Asymmetric Spindle Positioning in Caenorhabditis elegans Embryos. Science, 300(5627), 1957–1961. https://doi.org/10.1126/science.1084146

Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity

The Journal of Neuroscience / Sep 15, 1998

Ingi, T., Krumins, A. M., Chidiac, P., Brothers, G. M., Chung, S., Snow, B. E., Barnes, C. A., Lanahan, A. A., Siderovski, D. P., Ross, E. M., Gilman, A. G., & Worley, P. F. (1998). Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity. The Journal of Neuroscience, 18(18), 7178–7188. https://doi.org/10.1523/jneurosci.18-18-07178.1998

Regulation of T cell activation, anxiety, and male aggression by RGS2

Proceedings of the National Academy of Sciences / Oct 10, 2000

Oliveira-dos-Santos, A. J., Matsumoto, G., Snow, B. E., Bai, D., Houston, F. P., Whishaw, I. Q., Mariathasan, S., Sasaki, T., Wakeham, A., Ohashi, P. S., Roder, J. C., Barnes, C. A., Siderovski, D. P., & Penninger, J. M. (2000). Regulation of T cell activation, anxiety, and male aggression by RGS2. Proceedings of the National Academy of Sciences, 97(22), 12272–12277. https://doi.org/10.1073/pnas.220414397

A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to G β5 subunits

Proceedings of the National Academy of Sciences / Oct 27, 1998

Snow, B. E., Krumins, A. M., Brothers, G. M., Lee, S.-F., Wall, M. A., Chung, S., Mangion, J., Arya, S., Gilman, A. G., & Siderovski, D. P. (1998). A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to G β5 subunits. Proceedings of the National Academy of Sciences, 95(22), 13307–13312. https://doi.org/10.1073/pnas.95.22.13307

Structural and Evolutionary Division of Phosphotyrosine Binding (PTB) Domains

Journal of Molecular Biology / Jan 01, 2005

Uhlik, M. T., Temple, B., Bencharit, S., Kimple, A. J., Siderovski, D. P., & Johnson, G. L. (2005). Structural and Evolutionary Division of Phosphotyrosine Binding (PTB) Domains. Journal of Molecular Biology, 345(1), 1–20. https://doi.org/10.1016/j.jmb.2004.10.038

Regulators of G-Protein Signaling and Their Gα Substrates: Promises and Challenges in Their Use as Drug Discovery Targets

Pharmacological Reviews / Jul 07, 2011

Kimple, A. J., Bosch, D. E., Giguère, P. M., & Siderovski, D. P. (2011). Regulators of G-Protein Signaling and Their Gα Substrates: Promises and Challenges in Their Use as Drug Discovery Targets. Pharmacological Reviews, 63(3), 728–749. https://doi.org/10.1124/pr.110.003038

A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange

The EMBO Journal / Mar 15, 2002

Rossman, K. L., Worthylake, D. K., Snyder, J. T., Siderovski, D. P., Campbell, S. L., & Sondek, J. (2002). A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. The EMBO Journal, 21(6), 1315–1326. https://doi.org/10.1093/emboj/21.6.1315

Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits

Nature / Apr 01, 2002

Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J., & Siderovski, D. P. (2002). Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature, 416(6883), 878–881. https://doi.org/10.1038/416878a

The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo

Current Biology / Nov 01, 2000

Liu, Y., Snow, B. E., Hande, M. P., Yeung, D., Erdmann, N. J., Wakeham, A., Itie, A., Siderovski, D. P., Lansdorp, P. M., Robinson, M. O., & Harrington, L. (2000). The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Current Biology, 10(22), 1459–1462. https://doi.org/10.1016/s0960-9822(00)00805-8

A new family of regulators of G-protein-coupled receptors?

Current Biology / Feb 01, 1996

Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., & Tyers, M. (1996). A new family of regulators of G-protein-coupled receptors? Current Biology, 6(2), 211–212. https://doi.org/10.1016/s0960-9822(02)00454-2

Structural basis for the selective activation of Rho GTPases by Dbl exchange factors

Nature Structural Biology / May 13, 2002

Snyder, J. T., Worthylake, D. K., Rossman, K. L., Betts, L., Pruitt, W. M., Siderovski, D. P., Der, C. J., & Sondek, J. (2002). Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nature Structural Biology, 9(6), 468–475. https://doi.org/10.1038/nsb796

Molecular cloning ofLSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE)

Nucleic Acids Research / Jan 01, 1995

Matsuyama, T., Grossman, A., Mittrücker, H.-W., Siderovski, D. P., Kiefer, F., Kawakami, T., Richardson, C. D., Taniguchi, T., Yoshinaga, S. K., & Mak, T. W. (1995). Molecular cloning ofLSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Research, 23(12), 2127–2136. https://doi.org/10.1093/nar/23.12.2127

The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy

Immunity / Jun 01, 2012

Lei, Y., Wen, H., Yu, Y., Taxman, D. J., Zhang, L., Widman, D. G., Swanson, K. V., Wen, K.-W., Damania, B., Moore, C. B., Giguère, P. M., Siderovski, D. P., Hiscott, J., Razani, B., Semenkovich, C. F., Chen, X., & Ting, J. P.-Y. (2012). The Mitochondrial Proteins NLRX1 and TUFM Form a Complex that Regulates Type I Interferon and Autophagy. Immunity, 36(6), 933–946. https://doi.org/10.1016/j.immuni.2012.03.025

RGS12 and RGS14 GoLoco Motifs Are GαiInteraction Sites with Guanine Nucleotide Dissociation Inhibitor Activity

Journal of Biological Chemistry / Aug 01, 2001

Kimple, R. J., De Vries, L., Tronchère, H., Behe, C. I., Morris, R. A., Farquhar, M. G., & Siderovski, D. P. (2001). RGS12 and RGS14 GoLoco Motifs Are GαiInteraction Sites with Guanine Nucleotide Dissociation Inhibitor Activity. Journal of Biological Chemistry, 276(31), 29275–29281. https://doi.org/10.1074/jbc.m103208200

GTPase Activating Specificity of RGS12 and Binding Specificity of an Alternatively Spliced PDZ (PSD-95/Dlg/ZO-1) Domain

Journal of Biological Chemistry / Jul 01, 1998

Snow, B. E., Hall, R. A., Krumins, A. M., Brothers, G. M., Bouchard, D., Brothers, C. A., Chung, S., Mangion, J., Gilman, A. G., Lefkowitz, R. J., & Siderovski, D. P. (1998). GTPase Activating Specificity of RGS12 and Binding Specificity of an Alternatively Spliced PDZ (PSD-95/Dlg/ZO-1) Domain. Journal of Biological Chemistry, 273(28), 17749–17755. https://doi.org/10.1074/jbc.273.28.17749

GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling

Proceedings of the National Academy of Sciences / Oct 30, 2007

Johnston, C. A., Taylor, J. P., Gao, Y., Kimple, A. J., Grigston, J. C., Chen, J.-G., Siderovski, D. P., Jones, A. M., & Willard, F. S. (2007). GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proceedings of the National Academy of Sciences, 104(44), 17317–17322. https://doi.org/10.1073/pnas.0704751104

Return of the GDI: The GoLoco Motif in Cell Division

Annual Review of Biochemistry / Jun 01, 2004

Willard, F. S., Kimple, R. J., & Siderovski, D. P. (2004). Return of the GDI: The GoLoco Motif in Cell Division. Annual Review of Biochemistry, 73(1), 925–951. https://doi.org/10.1146/annurev.biochem.73.011303.073756

Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice

Journal of Clinical Investigation / Jan 05, 2009

Takimoto, E., Koitabashi, N., Hsu, S., Ketner, E. A., Zhang, M., Nagayama, T., Bedja, D., Gabrielson, K. L., Blanton, R., Siderovski, D. P., Mendelsohn, M. E., & Kass, D. A. (2009). Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. Journal of Clinical Investigation. https://doi.org/10.1172/jci35620

RIC-8 Is Required for GPR-1/2-Dependent Gα Function during Asymmetric Division of C. elegans Embryos

Cell / Oct 01, 2004

Afshar, K., Willard, F. S., Colombo, K., Johnston, C. A., McCudden, C. R., Siderovski, D. P., & Gönczy, P. (2004). RIC-8 Is Required for GPR-1/2-Dependent Gα Function during Asymmetric Division of C. elegans Embryos. Cell, 119(2), 219–230. https://doi.org/10.1016/j.cell.2004.09.026

Structural diversity in the RGS domain and its interaction with heterotrimeric G protein α-subunits

Proceedings of the National Academy of Sciences / Apr 29, 2008

Soundararajan, M., Willard, F. S., Kimple, A. J., Turnbull, A. P., Ball, L. J., Schoch, G. A., Gileadi, C., Fedorov, O. Y., Dowler, E. F., Higman, V. A., Hutsell, S. Q., Sundström, M., Doyle, D. A., & Siderovski, D. P. (2008). Structural diversity in the RGS domain and its interaction with heterotrimeric G protein α-subunits. Proceedings of the National Academy of Sciences, 105(17), 6457–6462. https://doi.org/10.1073/pnas.0801508105

LGN regulates mitotic spindle orientation during epithelial morphogenesis

Journal of Cell Biology / Apr 12, 2010

Zheng, Z., Zhu, H., Wan, Q., Liu, J., Xiao, Z., Siderovski, D. P., & Du, Q. (2010). LGN regulates mitotic spindle orientation during epithelial morphogenesis. Journal of Cell Biology, 189(2), 275–288. https://doi.org/10.1083/jcb.200910021

The GoLoco motif: a Gαi/o binding motif and potential guanine-nucleotide exchange factor

Trends in Biochemical Sciences / Sep 01, 1999

Siderovski, D. P., Diversé-Pierluissi, M. A., & De Vries, L. (1999). The GoLoco motif: a Gαi/o binding motif and potential guanine-nucleotide exchange factor. Trends in Biochemical Sciences, 24(9), 340–341. https://doi.org/10.1016/s0968-0004(99)01441-3

Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gα i subunits

Proceedings of the National Academy of Sciences / Dec 19, 2000

De Vries, L., Fischer, T., Tronchère, H., Brothers, G. M., Strockbine, B., Siderovski, D. P., & Farquhar, M. G. (2000). Activator of G protein signaling 3 is a guanine dissociation inhibitor for Gα i subunits. Proceedings of the National Academy of Sciences, 97(26), 14364–14369. https://doi.org/10.1073/pnas.97.26.14364

HIV-1 Tat Directly Interacts with the Interferon-Induced, Double-Stranded RNA-Dependent Kinase, PKR

Virology / Nov 01, 1995

MCMILLAN, N. A. J., CHUN, R. F., SIDEROVSKI, D. P., GALABRU, J., TOONE, W. M., SAMUEL, C. E., MAK, T. W., HOVANESSIAN, A. G., JEANG, K.-T., & WILLIAMS, B. R. G. (1995). HIV-1 Tat Directly Interacts with the Interferon-Induced, Double-Stranded RNA-Dependent Kinase, PKR. Virology, 213(2), 413–424. https://doi.org/10.1006/viro.1995.0014

Receptor-Mediated Activation of Heterotrimeric G-Proteins: Current Structural Insights

Molecular Pharmacology / Apr 12, 2007

Johnston, C. A., & Siderovski, D. P. (2007). Receptor-Mediated Activation of Heterotrimeric G-Proteins: Current Structural Insights. Molecular Pharmacology, 72(2), 219–230. https://doi.org/10.1124/mol.107.034348

Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism

The EMBO Journal / Jan 25, 2007

Liu, H., Suresh, A., Willard, F. S., Siderovski, D. P., Lu, S., & Naqvi, N. I. (2007). Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. The EMBO Journal, 26(3), 690–700. https://doi.org/10.1038/sj.emboj.7601536

A Human Gene Encoding a Putative Basic Helix–Loop–Helix Phosphoprotein Whose mRNA Increases Rapidly in Cycloheximide-Treated Blood Mononuclear Cells

DNA and Cell Biology / Feb 01, 1994

SIDEROVSKI, D. P., HEXIMER, S. P., & FORSDYKE, D. R. (1994). A Human Gene Encoding a Putative Basic Helix–Loop–Helix Phosphoprotein Whose mRNA Increases Rapidly in Cycloheximide-Treated Blood Mononuclear Cells. DNA and Cell Biology, 13(2), 125–147. https://doi.org/10.1089/dna.1994.13.125

Activation of Phospholipase C-ε by Heterotrimeric G Protein βγ-Subunits

Journal of Biological Chemistry / Dec 01, 2001

Wing, M. R., Houston, D., Kelley, G. G., Der, C. J., Siderovski, D. P., & Harden, T. K. (2001). Activation of Phospholipase C-ε by Heterotrimeric G Protein βγ-Subunits. Journal of Biological Chemistry, 276(51), 48257–48261. https://doi.org/10.1074/jbc.c100574200

Whither Goest the RGS Proteins?

Critical Reviews in Biochemistry and Molecular Biology / Jan 01, 1999

Siderovski, D. P., Strockbine, B., & Behe, C. I. (1999). Whither Goest the RGS Proteins? Critical Reviews in Biochemistry and Molecular Biology, 34(4), 215–251. https://doi.org/10.1080/10409239991209273

Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina

Neuron / Nov 01, 2005

Žigman, M., Cayouette, M., Charalambous, C., Schleiffer, A., Hoeller, O., Dunican, D., McCudden, C. R., Firnberg, N., Barres, B. A., Siderovski, D. P., & Knoblich, J. A. (2005). Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina. Neuron, 48(4), 539–545. https://doi.org/10.1016/j.neuron.2005.09.030

Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins

Nature Cell Biology / Oct 16, 2005

Wang, H., Ng, K. H., Qian, H., Siderovski, D. P., Chia, W., & Yu, F. (2005). Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins. Nature Cell Biology, 7(11), 1091–1098. https://doi.org/10.1038/ncb1317

Receptor-selective Effects of Endogenous RGS3 and RGS5 to Regulate Mitogen-activated Protein Kinase Activation in Rat Vascular Smooth Muscle Cells

Journal of Biological Chemistry / Jul 01, 2002

Wang, Q., Liu, M., Mullah, B., Siderovski, D. P., & Neubig, R. R. (2002). Receptor-selective Effects of Endogenous RGS3 and RGS5 to Regulate Mitogen-activated Protein Kinase Activation in Rat Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 277(28), 24949–24958. https://doi.org/10.1074/jbc.m203802200

Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11

Proceedings of the National Academy of Sciences / May 25, 1999

Snow, B. E., Betts, L., Mangion, J., Sondek, J., & Siderovski, D. P. (1999). Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proceedings of the National Academy of Sciences, 96(11), 6489–6494. https://doi.org/10.1073/pnas.96.11.6489

PB1 Domain Interaction of p62/Sequestosome 1 and MEKK3 Regulates NF-κB Activation

Journal of Biological Chemistry / Jan 01, 2010

Nakamura, K., Kimple, A. J., Siderovski, D. P., & Johnson, G. L. (2010). PB1 Domain Interaction of p62/Sequestosome 1 and MEKK3 Regulates NF-κB Activation. Journal of Biological Chemistry, 285(3), 2077–2089. https://doi.org/10.1074/jbc.m109.065102

Comment on "A G Protein–Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid"

Science / Nov 09, 2007

Johnston, C. A., Temple, B. R., Chen, J.-G., Gao, Y., Moriyama, E. N., Jones, A. M., Siderovski, D. P., & Willard, F. S. (2007). Comment on “A G Protein–Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid.” Science, 318(5852), 914–914. https://doi.org/10.1126/science.1143230

Molecular Cloning and Expression Analysis of RatRgs12andRgs14

Biochemical and Biophysical Research Communications / Apr 01, 1997

Snow, B. E., Antonio, L., Suggs, S., Gutstein, H. B., & Siderovski, D. P. (1997). Molecular Cloning and Expression Analysis of RatRgs12andRgs14. Biochemical and Biophysical Research Communications, 233(3), 770–777. https://doi.org/10.1006/bbrc.1997.6537

Clathrin Adaptor AP2 Regulates Thrombin Receptor Constitutive Internalization and Endothelial Cell Resensitization

Molecular and Cellular Biology / Apr 01, 2006

Paing, M. M., Johnston, C. A., Siderovski, D. P., & Trejo, J. (2006). Clathrin Adaptor AP2 Regulates Thrombin Receptor Constitutive Internalization and Endothelial Cell Resensitization. Molecular and Cellular Biology, 26(8), 3231–3242. https://doi.org/10.1128/mcb.26.8.3231-3242.2006

Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins

Journal of Biological Chemistry / Dec 01, 2001

Snyder, J. T., Rossman, K. L., Baumeister, M. A., Pruitt, W. M., Siderovski, D. P., Der, C. J., Lemmon, M. A., & Sondek, J. (2001). Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins. Journal of Biological Chemistry, 276(49), 45868–45875. https://doi.org/10.1074/jbc.m106731200

Telomerase-Associated Protein TEP1 Is Not Essential for Telomerase Activity or Telomere Length Maintenance In Vivo

Molecular and Cellular Biology / Nov 01, 2000

Liu, Y., Snow, B. E., Hande, M. P., Baerlocher, G., Kickhoefer, V. A., Yeung, D., Wakeham, A., Itie, A., Siderovski, D. P., Lansdorp, P. M., Robinson, M. O., & Harrington, L. (2000). Telomerase-Associated Protein TEP1 Is Not Essential for Telomerase Activity or Telomere Length Maintenance In Vivo. Molecular and Cellular Biology, 20(21), 8178–8184. https://doi.org/10.1128/mcb.20.21.8178-8184.2000

Crystal structure of the multifunctional Gβ5–RGS9 complex

Nature Structural & Molecular Biology / Jan 20, 2008

Cheever, M. L., Snyder, J. T., Gershburg, S., Siderovski, D. P., Harden, T. K., & Sondek, J. (2008). Crystal structure of the multifunctional Gβ5–RGS9 complex. Nature Structural & Molecular Biology, 15(2), 155–162. https://doi.org/10.1038/nsmb.1377

Structure-based Protocol for Identifying Mutations that Enhance Protein–Protein Binding Affinities

Journal of Molecular Biology / Aug 01, 2007

Sammond, D. W., Eletr, Z. M., Purbeck, C., Kimple, R. J., Siderovski, D. P., & Kuhlman, B. (2007). Structure-based Protocol for Identifying Mutations that Enhance Protein–Protein Binding Affinities. Journal of Molecular Biology, 371(5), 1392–1404. https://doi.org/10.1016/j.jmb.2007.05.096

Chronic Olanzapine Treatment Causes Differential Expression of Genes in Frontal Cortex of Rats as Revealed by DNA Microarray Technique

Neuropsychopharmacology / Jan 11, 2006

Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Bell, C., Nos, L., Fried, P., Pearce, D. A., Singh, S., Siderovski, D. P., Willard, F. S., & Fukuda, M. (2006). Chronic Olanzapine Treatment Causes Differential Expression of Genes in Frontal Cortex of Rats as Revealed by DNA Microarray Technique. Neuropsychopharmacology, 31(9), 1888–1899. https://doi.org/10.1038/sj.npp.1301002

Cortical localization of the Gα protein GPA-16 requires RIC-8 function duringC. elegansasymmetric cell division

Development / Oct 15, 2005

Afshar, K., Willard, F. S., Colombo, K., Siderovski, D. P., & Gönczy, P. (2005). Cortical localization of the Gα protein GPA-16 requires RIC-8 function duringC. elegansasymmetric cell division. Development, 132(20), 4449–4459. https://doi.org/10.1242/dev.02039

Structure of Gαi1 Bound to a GDP-Selective Peptide Provides Insight into Guanine Nucleotide Exchange

Structure / Jul 01, 2005

Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., & Siderovski, D. P. (2005). Structure of Gαi1 Bound to a GDP-Selective Peptide Provides Insight into Guanine Nucleotide Exchange. Structure, 13(7), 1069–1080. https://doi.org/10.1016/j.str.2005.04.007

Cloning of Human Lymphocyte-Specific Interferon Regulatory Factor (hLSIRF/hIRF4) and Mapping of the Gene to 6p23–p25

Genomics / Oct 01, 1996

Grossman, A., Mittrücker, H.-W., Nicholl, J., Suzuki, A., Chung, S., Antonio, L., Suggs, S., Sutherland, G. R., Siderovski, D. P., & Mak, T. W. (1996). Cloning of Human Lymphocyte-Specific Interferon Regulatory Factor (hLSIRF/hIRF4) and Mapping of the Gene to 6p23–p25. Genomics, 37(2), 229–233. https://doi.org/10.1006/geno.1996.0547

Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity

Proceedings of the National Academy of Sciences / Mar 29, 2010

Lambert, N. A., Johnston, C. A., Cappell, S. D., Kuravi, S., Kimple, A. J., Willard, F. S., & Siderovski, D. P. (2010). Regulators of G-protein Signaling accelerate GPCR signaling kinetics and govern sensitivity solely by accelerating GTPase activity. Proceedings of the National Academy of Sciences, 107(15), 7066–7071. https://doi.org/10.1073/pnas.0912934107

Gβγ Isoforms Selectively Rescue Plasma Membrane Localization and Palmitoylation of Mutant Gαs and Gαq

Journal of Biological Chemistry / Jun 01, 2001

Evanko, D. S., Thiyagarajan, M. M., Siderovski, D. P., & Wedegaertner, P. B. (2001). Gβγ Isoforms Selectively Rescue Plasma Membrane Localization and Palmitoylation of Mutant Gαs and Gαq. Journal of Biological Chemistry, 276(26), 23945–23953. https://doi.org/10.1074/jbc.m101154200

β 2 -Adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids

Proceedings of the National Academy of Sciences / Nov 11, 2011

Holden, N. S., Bell, M. J., Rider, C. F., King, E. M., Gaunt, D. D., Leigh, R., Johnson, M., Siderovski, D. P., Heximer, S. P., Giembycz, M. A., & Newton, R. (2011). β 2 -Adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids. Proceedings of the National Academy of Sciences, 108(49), 19713–19718. https://doi.org/10.1073/pnas.1110226108

A Set of Human Putative Lymphocyte G0/G1Switch Genes Includes Genes Homologous to Rodent Cytokine and Zinc Finger Protein-Encoding Genes

DNA and Cell Biology / Oct 01, 1990

SIDEROVSKI, D. P., BLUM, S., FORSDYKE, R. E., & FORSDYKE, D. R. (1990). A Set of Human Putative Lymphocyte G0/G1Switch Genes Includes Genes Homologous to Rodent Cytokine and Zinc Finger Protein-Encoding Genes. DNA and Cell Biology, 9(8), 579–587. https://doi.org/10.1089/dna.1990.9.579

Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation

The EMBO Journal / Mar 22, 2007

Willard, M. D., Willard, F. S., Li, X., Cappell, S. D., Snider, W. D., & Siderovski, D. P. (2007). Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation. The EMBO Journal, 26(8), 2029–2040. https://doi.org/10.1038/sj.emboj.7601659

12/13- and Rho-Dependent Activation of Phospholipase C-ϵ by Lysophosphatidic Acid and Thrombin Receptors

Molecular Pharmacology / Mar 22, 2006

Hains, M. D., Wing, M. R., Maddileti, S., Siderovski, D. P., & Harden, T. K. (2006). Gα12/13- and Rho-Dependent Activation of Phospholipase C-ϵ by Lysophosphatidic Acid and Thrombin Receptors. Molecular Pharmacology, 69(6), 2068–2075. https://doi.org/10.1124/mol.105.017921

Exome Sequencing in 53 Sporadic Cases of Schizophrenia Identifies 18 Putative Candidate Genes

PLoS ONE / Nov 24, 2014

Guipponi, M., Santoni, F. A., Setola, V., Gehrig, C., Rotharmel, M., Cuenca, M., Guillin, O., Dikeos, D., Georgantopoulos, G., Papadimitriou, G., Curtis, L., Méary, A., Schürhoff, F., Jamain, S., Avramopoulos, D., Leboyer, M., Rujescu, D., Pulver, A., Campion, D., … Antonarakis, S. E. (2014). Exome Sequencing in 53 Sporadic Cases of Schizophrenia Identifies 18 Putative Candidate Genes. PLoS ONE, 9(11), e112745. https://doi.org/10.1371/journal.pone.0112745

Structural Determinants of G-protein α Subunit Selectivity by Regulator of G-protein Signaling 2 (RGS2)

Journal of Biological Chemistry / Jul 01, 2009

Kimple, A. J., Soundararajan, M., Hutsell, S. Q., Roos, A. K., Urban, D. J., Setola, V., Temple, B. R. S., Roth, B. L., Knapp, S., Willard, F. S., & Siderovski, D. P. (2009). Structural Determinants of G-protein α Subunit Selectivity by Regulator of G-protein Signaling 2 (RGS2). Journal of Biological Chemistry, 284(29), 19402–19411. https://doi.org/10.1074/jbc.m109.024711

Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae

Eukaryotic Cell / Feb 01, 2006

Chasse, S. A., Flanary, P., Parnell, S. C., Hao, N., Cha, J. Y., Siderovski, D. P., & Dohlman, H. G. (2006). Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae. Eukaryotic Cell, 5(2), 330–346. https://doi.org/10.1128/ec.5.2.330-346.2006

High-Affinity Immobilization of Proteins Using Biotin- and GST-Based Coupling Strategies

Methods in Molecular Biology / Jan 01, 2010

Hutsell, S. Q., Kimple, R. J., Siderovski, D. P., Willard, F. S., & Kimple, A. J. (2010). High-Affinity Immobilization of Proteins Using Biotin- and GST-Based Coupling Strategies. In Surface Plasmon Resonance (pp. 75–90). Humana Press. https://doi.org/10.1007/978-1-60761-670-2_4

RGS14 Is a Mitotic Spindle Protein Essential from the First Division of the Mammalian Zygote

Developmental Cell / Nov 01, 2004

Martin-McCaffrey, L., Willard, F. S., Oliveira-dos-Santos, A. J., Natale, D. R. C., Snow, B. E., Kimple, R. J., Pajak, A., Watson, A. J., Dagnino, L., Penninger, J. M., Siderovski, D. P., & D’Souza, S. J. A. (2004). RGS14 Is a Mitotic Spindle Protein Essential from the First Division of the Mammalian Zygote. Developmental Cell, 7(5), 763–769. https://doi.org/10.1016/j.devcel.2004.10.004

Selective Regulation of N-Type Ca Channels by Different Combinations of G-Protein β/γ Subunits and RGS Proteins

The Journal of Neuroscience / Oct 01, 2000

Zhou, J. Y., Siderovski, D. P., & Miller, R. J. (2000). Selective Regulation of N-Type Ca Channels by Different Combinations of G-Protein β/γ Subunits and RGS Proteins. The Journal of Neuroscience, 20(19), 7143–7148. https://doi.org/10.1523/jneurosci.20-19-07143.2000

Functional relevance of the disulfide-linked complex of the N-terminal PDZ domain of InaD with NorpA

The EMBO Journal / Aug 15, 2001

Kimple, M. E. (2001). Functional relevance of the disulfide-linked complex of the N-terminal PDZ domain of InaD with NorpA. The EMBO Journal, 20(16), 4414–4422. https://doi.org/10.1093/emboj/20.16.4414

Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif

Biochemical Journal / Mar 15, 2004

KIMPLE, R. J., WILLARD, F. S., HAINS, M. D., JONES, M. B., NWEKE, G. K., & SIDEROVSKI, D. P. (2004). Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif. Biochemical Journal, 378(3), 801–808. https://doi.org/10.1042/bj20031686

The G   DIMER as a NOVEL SOURCE of SELECTIVITY in G-Protein Signaling: GGL-ing AT CONVENTION

Molecular Interventions / Aug 01, 2004

Jones, M. B. (2004). The G   DIMER as a NOVEL SOURCE of SELECTIVITY in G-Protein Signaling: GGL-ing AT CONVENTION. Molecular Interventions, 4(4), 200–214. https://doi.org/10.1124/mi.4.4.4

Dynamic Regulation of Mammalian Numb by G Protein-coupled Receptors and Protein Kinase C Activation: Structural Determinants of Numb Association with the Cortical Membrane

Molecular Biology of the Cell / Sep 01, 2006

Dho, S. E., Trejo, J., Siderovski, D. P., & McGlade, C. J. (2006). Dynamic Regulation of Mammalian Numb by G Protein-coupled Receptors and Protein Kinase C Activation: Structural Determinants of Numb Association with the Cortical Membrane. Molecular Biology of the Cell, 17(9), 4142–4155. https://doi.org/10.1091/mbc.e06-02-0097

D2 dopamine receptor activation of potassium channels is selectively decoupled by Gαi‐specific GoLoco motif peptides

Journal of Neurochemistry / Feb 17, 2005

Webb, C. K., McCudden, C. R., Willard, F. S., Kimple, R. J., Siderovski, D. P., & Oxford, G. S. (2005). D2 dopamine receptor activation of potassium channels is selectively decoupled by Gαi‐specific GoLoco motif peptides. Journal of Neurochemistry, 92(6), 1408–1418. Portico. https://doi.org/10.1111/j.1471-4159.2004.02997.x

G protein signaling in the parasite Entamoeba histolytica

Experimental & Molecular Medicine / Mar 22, 2013

Bosch, D. E., & Siderovski, D. P. (2013). G protein signaling in the parasite Entamoeba histolytica. Experimental & Molecular Medicine, 45(3), e15–e15. https://doi.org/10.1038/emm.2013.30

Gβ Association and Effector Interaction Selectivities of the Divergent Gγ Subunit Gγ13

Journal of Biological Chemistry / Dec 01, 2001

Blake, B. L., Wing, M. R., Zhou, J. Y., Lei, Q., Hillmann, J. R., Behe, C. I., Morris, R. A., Harden, T. K., Bayliss, D. A., Miller, R. J., & Siderovski, D. P. (2001). Gβ Association and Effector Interaction Selectivities of the Divergent Gγ Subunit Gγ13. Journal of Biological Chemistry, 276(52), 49267–49274. https://doi.org/10.1074/jbc.m106565200

The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Gα-interaction face

Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics / Sep 01, 2007

Kimple, A. J., Willard, F. S., Giguère, P. M., Johnston, C. A., Mocanu, V., & Siderovski, D. P. (2007). The RGS protein inhibitor CCG-4986 is a covalent modifier of the RGS4 Gα-interaction face. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1774(9), 1213–1220. https://doi.org/10.1016/j.bbapap.2007.06.002

Established and Emerging Fluorescence-Based Assays for G-Protein Function: Ras-Superfamily GTPases

Combinatorial Chemistry & High Throughput Screening / Jun 01, 2003

Rojas, R., Kimple, R., Rossman, K., Siderovski, D., & Sondek, J. (2003). Established and Emerging Fluorescence-Based Assays for G-Protein Function: Ras-Superfamily GTPases. Combinatorial Chemistry & High Throughput Screening, 6(4), 409–418. https://doi.org/10.2174/138620703106298509

A Capture Coupling Method for the Covalent Immobilization of Hexahistidine Tagged Proteins for Surface Plasmon Resonance

Methods in Molecular Biology / Jan 01, 2010

Kimple, A. J., Muller, R. E., Siderovski, D. P., & Willard, F. S. (2010). A Capture Coupling Method for the Covalent Immobilization of Hexahistidine Tagged Proteins for Surface Plasmon Resonance. In Surface Plasmon Resonance (pp. 91–100). Humana Press. https://doi.org/10.1007/978-1-60761-670-2_5

Induction of Regulator of G-Protein Signaling 2 Expression by Long-Acting β2-Adrenoceptor Agonists and Glucocorticoids in Human Airway Epithelial Cells

Journal of Pharmacology and Experimental Therapeutics / Oct 25, 2013

Holden, N. S., George, T., Rider, C. F., Chandrasekhar, A., Shah, S., Kaur, M., Johnson, M., Siderovski, D. P., Leigh, R., Giembycz, M. A., & Newton, R. (2013). Induction of Regulator of G-Protein Signaling 2 Expression by Long-Acting β2-Adrenoceptor Agonists and Glucocorticoids in Human Airway Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 348(1), 12–24. https://doi.org/10.1124/jpet.113.204586

Computational Design of the Sequence and Structure of a Protein-Binding Peptide

Journal of the American Chemical Society / Mar 09, 2011

Sammond, D. W., Bosch, D. E., Butterfoss, G. L., Purbeck, C., Machius, M., Siderovski, D. P., & Kuhlman, B. (2011). Computational Design of the Sequence and Structure of a Protein-Binding Peptide. Journal of the American Chemical Society, 133(12), 4190–4192. https://doi.org/10.1021/ja110296z

Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

PLoS ONE / Mar 25, 2009

Willard, F. S., Willard, M. D., Kimple, A. J., Soundararajan, M., Oestreich, E. A., Li, X., Sowa, N. A., Kimple, R. J., Doyle, D. A., Der, C. J., Zylka, M. J., Snider, W. D., & Siderovski, D. P. (2009). Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector. PLoS ONE, 4(3), e4884. https://doi.org/10.1371/journal.pone.0004884

A direct fluorescence-based assay for RGS domain GTPase accelerating activity

Analytical Biochemistry / May 01, 2005

Willard, F. S., Kimple, A. J., Johnston, C. A., & Siderovski, D. P. (2005). A direct fluorescence-based assay for RGS domain GTPase accelerating activity. Analytical Biochemistry, 340(2), 341–351. https://doi.org/10.1016/j.ab.2005.02.015

Integrating energy calculations with functional assays to decipher the specificity of G protein–RGS protein interactions

Nature Structural & Molecular Biology / Jun 19, 2011

Kosloff, M., Travis, A. M., Bosch, D. E., Siderovski, D. P., & Arshavsky, V. Y. (2011). Integrating energy calculations with functional assays to decipher the specificity of G protein–RGS protein interactions. Nature Structural & Molecular Biology, 18(7), 846–853. https://doi.org/10.1038/nsmb.2068

A Point Mutation to Gαi Selectively Blocks GoLoco Motif Binding

Journal of Biological Chemistry / Dec 01, 2008

Willard, F. S., Zheng, Z., Guo, J., Digby, G. J., Kimple, A. J., Conley, J. M., Johnston, C. A., Bosch, D., Willard, M. D., Watts, V. J., Lambert, N. A., Ikeda, S. R., Du, Q., & Siderovski, D. P. (2008). A Point Mutation to Gαi Selectively Blocks GoLoco Motif Binding. Journal of Biological Chemistry, 283(52), 36698–36710. https://doi.org/10.1074/jbc.m804936200

The GoLoco Motif: Heralding a New Tango Between G Protein Signaling and Cell Division

Molecular Interventions / Apr 01, 2002

Kimple, R. J. (2002). The GoLoco Motif: Heralding a New Tango Between G Protein Signaling and Cell Division. Molecular Interventions, 2(2), 88–100. https://doi.org/10.1124/mi.2.2.88

Gα selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN

Biochimica et Biophysica Acta (BBA) - Molecular Cell Research / Sep 01, 2005

McCudden, C. R., Willard, F. S., Kimple, R. J., Johnston, C. A., Hains, M. D., Jones, M. B., & Siderovski, D. P. (2005). Gα selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1745(2), 254–264. https://doi.org/10.1016/j.bbamcr.2005.05.002

Minimal Determinants for Binding Activated Gα from the Structure of a Gαi1−Peptide Dimer,

Biochemistry / Aug 30, 2006

Johnston, C. A., Lobanova, E. S., Shavkunov, A. S., Low, J., Ramer, J. K., Blaesius, R., Fredericks, Z., Willard, F. S., Kuhlman, B., Arshavsky, V. Y., & Siderovski, D. P. (2006). Minimal Determinants for Binding Activated Gα from the Structure of a Gαi1−Peptide Dimer,. Biochemistry, 45(38), 11390–11400. https://doi.org/10.1021/bi0613832

Cloning of a retinally abundant regulator of G-protein signaling (RGS-r/RGS16): genomic structure and chromosomal localization of the human gene

Gene / Jan 01, 1998

Snow, B. E., Antonio, L., Suggs, S., & Siderovski, D. P. (1998). Cloning of a retinally abundant regulator of G-protein signaling (RGS-r/RGS16): genomic structure and chromosomal localization of the human gene. Gene, 206(2), 247–253. https://doi.org/10.1016/s0378-1119(97)00593-3

Inhibition of Dopamine Transporter Activity by G Protein βγ Subunits

PLoS ONE / Mar 26, 2013

Garcia-Olivares, J., Torres-Salazar, D., Owens, W. A., Baust, T., Siderovski, D. P., Amara, S. G., Zhu, J., Daws, L. C., & Torres, G. E. (2013). Inhibition of Dopamine Transporter Activity by G Protein βγ Subunits. PLoS ONE, 8(3), e59788. https://doi.org/10.1371/journal.pone.0059788

The effect of RGS12 on PDGFβ receptor signalling to p42/p44 mitogen activated protein kinase in mammalian cells

Cellular Signalling / Jul 01, 2006

Sambi, B. S., Hains, M. D., Waters, C. M., Connell, M. C., Willard, F. S., Kimple, A. J., Pyne, S., Siderovski, D. P., & Pyne, N. J. (2006). The effect of RGS12 on PDGFβ receptor signalling to p42/p44 mitogen activated protein kinase in mammalian cells. Cellular Signalling, 18(7), 971–981. https://doi.org/10.1016/j.cellsig.2005.08.003

Cooperative interaction between the DNA-binding domains of PU.1 and IRF4

Journal of Molecular Biology / Jun 01, 1998

Yee, A. A., Yin, P., Siderovski, D. P., Mak, T. W., Litchfield, D. W., & Arrowsmith, C. H. (1998). Cooperative interaction between the DNA-binding domains of PU.1 and IRF4. Journal of Molecular Biology, 279(5), 1075–1083. https://doi.org/10.1006/jmbi.1998.1838

Purification and In Vitro Functional Analysis of the Arabidopsis thaliana Regulator of G-Protein Signaling-1

Regulators of G-Protein Signaling, Part A / Jan 01, 2004

Willard, F. S., & Siderovski, D. P. (2004). Purification and In Vitro Functional Analysis of the Arabidopsis thaliana Regulator of G-Protein Signaling-1. In Methods in Enzymology (pp. 320–338). Elsevier. https://doi.org/10.1016/s0076-6879(04)89019-0

Covalent immobilization of histidine-tagged proteins for surface plasmon resonance

Analytical Biochemistry / Jun 01, 2006

Willard, F. S., & Siderovski, D. P. (2006). Covalent immobilization of histidine-tagged proteins for surface plasmon resonance. Analytical Biochemistry, 353(1), 147–149. https://doi.org/10.1016/j.ab.2006.02.004

Established and Emerging Fluorescence-Based Assays for G-Protein Function: Heterotrimeric G-Protein Alpha Subunits and Regulator of G-Protein Signaling (RGS) Proteins

Combinatorial Chemistry & High Throughput Screening / Jun 01, 2003

Kimple, R., Jones, M., Shutes, A., Yerxa, B., Siderovski, D., & Willard, F. (2003). Established and Emerging Fluorescence-Based Assays for G-Protein Function: Heterotrimeric G-Protein Alpha Subunits and Regulator of G-Protein Signaling (RGS) Proteins. Combinatorial Chemistry & High Throughput Screening, 6(4), 399–407. https://doi.org/10.2174/138620703106298491

A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis

PLoS Pathogens / Feb 23, 2012

Bosch, D. E., Willard, F. S., Ramanujam, R., Kimple, A. J., Willard, M. D., Naqvi, N. I., & Siderovski, D. P. (2012). A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis. PLoS Pathogens, 8(2), e1002553. https://doi.org/10.1371/journal.ppat.1002553

A High Throughput Fluorescence Polarization Assay for Inhibitors of the GoLoco Motif/G-alpha Interaction

Combinatorial Chemistry & High Throughput Screening / Jun 01, 2008

Kimple, A., Yasgar, A., Hughes, M., Jadhav, A., Willard, F., Muller, R., Austin, C., Inglese, J., Ibeanu, G., Siderovski, D., & Simeonov, A. (2008). A High Throughput Fluorescence Polarization Assay for Inhibitors of the GoLoco Motif/G-alpha Interaction. Combinatorial Chemistry & High Throughput Screening, 11(5), 396–409. https://doi.org/10.2174/138620708784534770

Regulator of G-protein Signaling-21 (RGS21) Is an Inhibitor of Bitter Gustatory Signaling Found in Lingual and Airway Epithelia

Journal of Biological Chemistry / Dec 01, 2012

Cohen, S. P., Buckley, B. K., Kosloff, M., Garland, A. L., Bosch, D. E., Cheng, G., Radhakrishna, H., Brown, M. D., Willard, F. S., Arshavsky, V. Y., Tarran, R., Siderovski, D. P., & Kimple, A. J. (2012). Regulator of G-protein Signaling-21 (RGS21) Is an Inhibitor of Bitter Gustatory Signaling Found in Lingual and Airway Epithelia. Journal of Biological Chemistry, 287(50), 41706–41719. https://doi.org/10.1074/jbc.m112.423806

Education

University of Toronto

Ph.D., Medical Biophysics / November, 1997

Toronto, Ontario, Canada

Experience

University of North Carolina at Chapel Hill

Professor / January, 1999June, 2012

West Virginia University School of Medicine

E.J. Van Liere Endowed Medicine Professor and Chairman / July, 2012February, 2020

Chair of the Dept. of Physiology and Pharmacology

University of North Texas Health Science Center

Professor & Chair / March, 2020Present

Links & Social Media

Join Dr. Dave on NotedSource!
Join Now

At NotedSource, we believe that professors, post-docs, scientists and other researchers have deep, untapped knowledge and expertise that can be leveraged to drive innovation within companies. NotedSource is committed to bridging the gap between academia and industry by providing a platform for collaboration with industry and networking with other researchers.

For industry, NotedSource identifies the right academic experts in 24 hours to help organizations build and grow. With a platform of thousands of knowledgeable PhDs, scientists, and industry experts, NotedSource makes connecting and collaborating easy.

For academic researchers such as professors, post-docs, and Ph.D.s, NotedSource provides tools to discover and connect to your colleagues with messaging and news feeds, in addition to the opportunity to be paid for your collaboration with vetted partners.

Expert Institutions
NotedSource has experts from Stanford University
Expert institutions using NotedSource include Oxfort University
Experts from McGill have used NotedSource to share their expertise
University of Chicago experts have used NotedSource
MIT researchers have used NotedSource
Proudly trusted by
Microsoft uses NotedSource for academic partnerships
Johnson & Johnson academic research projects on NotedSource
ProQuest (Clarivate) uses NotedSource as their industry academia platform
Slamom consulting engages academics for research collaboration on NotedSource
Omnicom and OMG find academics on notedsource
Unilever research project have used NotedSource to engage academic experts